Arbitrary-precision decimals. Enables making math calculations with rational numbers, without precision loss.
1.23(45)
1.23(45)
) can also be parsed back2
and 16
NaN
, Infinity
or -0
.and
, or
, xor
, shiftLeft
, shiftRight
)PI
, sin(1)
.BigInt
type. It automatically switches back and forth between fixed-precision and fractional representations.import { ExactNumber as N } from 'exactnumber';
1 + 0.36 // 1.3599999999999999
N(1).add('0.36').toString() // 1.36
(1 / 49) * 49 // 0.9999999999999999
N(1).div(49).mul(49).toString() // 1
10e16 + 5 // 100000000000000000
N('10e16').add(5).toString() // 100000000000000005
1 / 3 // 0.3333333333333333
N(1).div(3).toString() // 0.(3)
2**32 >> 32 // 0
N(2).pow(32).shiftRight(32).toString() // 1
npm i exactnumber
It can also be used directly from HTML (via jsDelivr):
<!-- loads the full, minified library into the global `exactnumber` variable -->
<script src="https://cdn.jsdelivr.net/npm/exactnumber"></script>
<!-- or loads the non-minified library -->
<script src="https://cdn.jsdelivr.net/npm/exactnumber/dist/index.umd.js"></script>
import { ExactNumber as N } from 'exactnumber';
N(1).add('3').toString(); // 4
N('1/7').add('1/10').toFraction(); // 17/70
N('1/7').toString(); // 0.(142857)
N('1/7').toString(6); // 0.(05)
N('1/7').toFixed(3); // 0.142
N('1/7').trunc(3).toString(); // 0.142
N('0.(3)').add('0.(6)').toString(); // 1
N('0b1100').bitwiseAnd('0b1010').toString(2); // 1000
N.max('1/1', '10/2', 3).toString(); // 5
N.fromBase('123', 4).toString(); // 27
// approximations
import { PI, sin, pow } from 'exactnumber';
PI(10).toString(); // 3.1415926535
const PI_OVER_2 = PI(10).div(2);
sin(PI_OVER_2, 5).toString(); // 1.00000
// 0.1232323 raised to the power of 2.193333, approximated with 10 decimals
pow('0.1(23)', '2.19(3)', 10).toString(); // 0.0101310867
add()
, sub()
mul()
, div()
, divToInt()
pow()
mod()
, powm()
sign()
, abs()
neg()
, inv()
intPart()
, fracPart()
cmp()
, eq()
, lt()
, lte()
, gt()
, gte()
isZero()
, isOne()
isInteger()
round()
, roundToDigits()
, floor()
, ceil()
, trunc()
bitwiseAnd()
, bitwiseOr()
, bitwiseXor()
, shiftLeft()
, shiftRight()
clamp()
getFractionParts()
normalize()
toFixed()
, toExponential()
, toPrecision()
, toString()
, toFraction()
toNumber()
ExactNumber.gcd()
, ExactNumber.lcm()
ExactNumber.min()
, ExactNumber.max()
ExactNumber.fromBase()
ExactNumber.range()
NEAREST_TO_POSITIVE
- Rounds to nearest number, with ties rounded towards +Infinity. Similar to Math.round().
NEAREST_TO_NEGATIVE
- Rounds to nearest number, with ties rounded towards -Infinity.
NEAREST_TO_EVEN
- Rounds to nearest number, with ties rounded towards the nearest even number.
NEAREST_TO_ZERO
- Rounds to nearest number, with ties rounded towards zero.
NEAREST_AWAY_FROM_ZERO
- Rounds to nearest number, with ties rounded away from zero.
TO_POSITIVE
- Rounds towards +Infinity. Similar to Math.ceil().
TO_NEGATIVE
- Rounds towards -Infinity. Similar to Math.floor().
TO_ZERO
- Rounds towards zero. Similar to Math.trunc().
AWAY_FROM_ZERO
- Rounds away from zero
TRUNCATED
FLOORED
EUCLIDEAN
Read more about them here.
These functions approximate irrational numbers with arbitrary number of decimals. The last parameter is always used to specify the number of correct decimals in the result.
sqrt()
, cbrt()
, nthroot()
pow()
, exp()
log()
, logn()
, log10()
, log2()
,PI()
sin()
, cos()
, tan()
asin()
, acos()
, atan()
sinh()
, cosh()
, tanh()
asinh()
, acosh()
, atanh()
License: MIT
Copyright © 2022 Dani Biró